Source Rocks and Petroleum Systems of Equatorial Guinea

Volume II

Source Rock and Oil Geochemistry

Final Version October 2015

By: Integrated Geochemical Interpretation Ltd., Hallsannery, Bideford, Devon, EX39 5HE. Tel. +44 (0) 1237 471749 Fax. +44 (0) 1237 421700 Email. info@igiltd.com

Table of Contents

1.	INTRO	DDUCTION	1
2.	DATA SAMF	BASING AND QUALITY ASSURANCE OF GEOCHEMICAL	2
	2.1	New Data	2
		2.1.1 Source Rock Screening Data	2
		2.1.2 Molecular Characterisation of Source Rocks	5
	2.2	Molecular Analysis of Crude Oils	6
		2.2.1 Reappraisal of Legacy Data	8
3.	SOUF	RCE ROCK EVALUATION	9
	3.1	Source Rock Stratigraphy	.9
	3.2	Organic Matter Content (TOC and Pyrolysis Yields)	11
		3.2.1 Source Quality (Kerogen Type and Organofacies)	16
	3.3	Measured Maturity (Well and Regional Depth Trends)	26
	3.4	Calculation of Effective Source Fractions	30
	3.5	Source Rock Lateral Distribution	34
	3.6	Molecular and Isotopic Characteristics of Source Rocks	39
		3.6.1 Source Parameters	40
		3.6.1.1 Alkanes & Isoprenoids	40
		3.6.1.2 Hopanes	42
		3.6.1.3 Other Biomarkers	47
		3.6.1.4 Bulk Fraction Isotopes	48
	3.7	Summary of Geochemical Characteristics of Main Source Intervals4	49
4.	OIL M	IOLECULAR GEOCHEMISTRY	52
	4.1	Geochemical Data Review and Key Biomarker Recognition	52
	4.2	Multivariate Statistical Analysis	56
	4.3	Oil Biomarker and Isotope Interpretation	62
		4.3.1 Oil Source Parameters	32
		4.3.1.1 Key molecular and isotopic discriminants	62
		4.3.1.2 Significance of seeps on Sao Tomé and Principé	73
	4.4	Molecular Maturity of Oils	75
	4.5	Post-Generation Alteration	30
		4.5.1 Biodegradation	31
		4.5.2 Fractionation	83

5.	OIL F	AMILIES	86
	5.1	Family A: Rio Muni Oils (Ceiba, Ebano, Oveng)	88
	5.2	Family B (Kribi-Campo and P-2 Oils)	90
	5.3	Family C (Benita I-1 and Belinda O-3 and ?Ambar-1 liquids)	92
	5.4	Family D (Zafiro oil and Alba condensate, not Ambar-1)	94
	5.5	Oil-Source Correlation	96
6.	CONC	CLUSIONS	99
	6.1	Source Rocks	99
	6.2	Oil Families and Oil-to-Source Correlation	100
7.	REFE	RENCES	102

List of Figures

Figure 1:	Screening Database of Source Rocks Samples including Legacy (Blue) and New Data (Red)
Figure 2:	Map of Oils Assembled for Geochemical Analysis8
Figure 3:	Stratigraphic Setting of Key Source Rock Intervals
Figure 4:	Schematic Wheeler Diagram (upper) and Geoseismic Section (lower) across the Rio Muni Basin Margin showing the Stratigraphic Relationships between SR1 Aptian, SR2 (Aptian-Albian) and SR3 (Albian-Turonian). The section runs east (right) to west (left)12
Figure 5:	TOC Histogram (0-90%) of all Samples. Inset is an expanded 0- 12% TOC Histogram (Note the predominance of younger samples with higher TOC)
Figure 6:	Present Day TOC Histograms (0-12%) for all Samples in the Gulf of Guinea Geochemical Database which Fall Within One of the 5 Identified Source Rock Intervals (see Table 4 for statistics)14
Figure 7:	A pseudo-van Krevelen Diagram (Hydrogen Index, HI vs. Oxygen Index, OI) of all 984 Samples with Available Rock-Eval® Data in the Gulf of Guinea Geochemical Database
Figure 8:	Pseudo-van Krevelen Diagrams (HI vs. OI) for Samples In Identified Source Rock Intervals with Rock-Eval® data available in the Gulf of Guinea Database
Figure 9:	HI-T _{max} Plot for 1,025 Source Rock Samples in the Gulf of Guinea Dataset, with Colours indicating Chronostratigraphy, and Symbols indicating TOC values
Figure 10:	HI-T _{max} Plots for Individual Source Rock Intervals (1-5) showing a Lacustrine-Marine-Deltaic Transitions from Mid-Cretaceous to Miocene Times
Figure 11:	HI-T _{max} Plots illustrating the Increasing Number of Better Quality Samples of Tertiary Source Rock (orange = Paleogene, yellow = Neogene). (see Figure 10 for legend)
Figure 12:	Cartoon showing Sub-Delta Source Rocks and some of the Processes leading to Intra-Delta Source Rocks (Samuel 2006, 2008)
Figure 13:	Cartoon illustrating the Fresh Water Blanket Model leading to Anoxia in Delta Slope and Front Environments (Cornford, 2008)24
Figure 14:	Rock-Eval® S_2 Yields versus TOC for all Potential Source Rock Samples in the Gulf of Guinea Database
Figure 15:	Measured Vitrinite Reflectance Maturity Data (%Ro) plotted against Depth for all Samples in the Gulf of Guinea Database27
Figure 16:	Measured Vitrinite Reflectance Maturity Data (%Ro) plotted against Depth with Colour indicating Generalised Sample Stratigraphy28

Figure 17:	Apparent Uplift (km) from measured %Ro-Depth Profiles for all Wells in the Study Area (inset: %Ro-depth plot showing uplift reconstruction)
Figure 18:	TOC versus Rock-Eval [®] S_2 used to discriminate between Samples with Effective and Ineffective Source Potential
Figure 19:	Distribution of Oil- and Gas-prone Source Rocks (S2 versus TOC) for Basins in and adjacent to the Study Area
Figure 20:	Sketch Illustrating the Regional Extension of Albian-Turonian Source Rock Deposition in the Gulf of Guinea (circle size proportional to TOC)
Figure 21:	Distribution of Source Rock Potential according to TOC in the Gulf of Guinea
Figure 22:	Distribution of Source Rock Potential according to Hydrogen Index in the Gulf of Guinea
Figure 23:	Histogram of Pristane/Phytane Ratios for all Extracted Source Rock Samples in the Studied Area41
Figure 24:	Plot of Pr/nC17 vs. Ph/nC18 for All Extracted Source Rock Samples in the Studied Area
Figure 25:	Key m/z 191 Biomarker Distributions for the Gulf of Guinea: Mapped Indices of Oleanane (left) and Gammacerane (right) Indices for Source Rock Extracts (Insets - left: Oleanane in Yassoukou Marine-1, 2,745-95m, right: Paleogene; Gammacerane in Benito-1, 1915m, Aptian-Albian)
Figure 26:	Source Lithofacies and Depositional Conditions based on C_{29}/C_{30} Hopane vs. C_{35}/C_{34} Extended Hopane Ratios
Figure 27:	C ₂₉ -C ₃₀ -C ₃₁ Ternary Plot of Hopane Distributions Indicating Source Trends for Mid-Cretaceous and Tertiary Source Rock Extracts45
Figure 28:	Source Rock Depositional Environment given by C ₂₅ /C ₂₆ Tricyclic Terpanes vs. Pristane/Phytane ratios
Figure 29:	Mass Chromatogram showing m/z 191 (upper) compared with m/z 205 (lower) for Rio Muni basin well Benito-1 (1915m) Aptian-Albian Source Rock Extract
Figure 30:	Mass Chromatogram showing Tetracyclic Polyprenoids (TPPs) in m/z 259 for a Solvent Extract of Benito-1 (1,915m) Aptian-Albian Source Rock
Figure 31:	β -carotane Identified in m/z 125 Mass Chromatogram for a Solvent Extract of Benito-1 (1915m) Aptian-Albian Source Rock48
Figure 32:	Sofer Plot of δ^{13} C (Saturate Fraction) vs. δ^{13} C (Aromatic Fraction) for all Databased Source Rock Samples (diagonal=Canonical Variable of -0.47)
Figure 33:	Mapped Values of Oleanane & Gammacerane in Oils (see Figure 25 for comparative source rock data)
Figure 34:	Gammacerane Index Plotted against Oleanane Index in order to differentiate between Cretaceous and Tertiary Sourced Oils

Figure 35:	Example of a PCA Matrix during Pre-Screening in Sirius© to remove Blank Cells (indicated by blue squares)
Figure 36:	PC1 vs. PC2 plots of Scores (left) and Loadings (right) for the Dataset of all Oils & Seeps using Raw Peak Data
Figure 37:	PC1 vs. PC2 Plots of Scores (left) and Loadings (right) from all New 2007/08 Equatorial Guinea Oils based on Raw Peak Data59
Figure 38:	PC1 vs. PC2 Plots of Scores (left) and Loadings (right) for the Dataset of all Oils and Seeps (new 2007/08 data) using Biomarker Ratio Data
Figure 39:	PC2 vs. PC3 Plots of Scores (left) and Loadings (right) for the Dataset of all Oils and Seeps (new 2007/08 data) using Biomarker Ratio Data
Figure 40:	Sofer Isotope Plot for Oils and Source Rock extracts Showing Sample Type and Stratigraphy (upper) & Field/Well and Basin name (Lower)
Figure 41:	Pristane/nC ₁₇ vs Phytane/nC ₁₈ ratios for Sample Type and Stratigraphy (upper), and Basin and Field (lower) to Distinguish Source Rock Depositional Environment and Maturity
Figure 42:	Norhopane/Hopane vs. Pr/Ph for oils (symbols) and Source Rock Extracts (thin stars) to Distinguish Depositional Environment
Figure 43:	Extended Hopanes Versus Pristane/Phytane Ratios Discriminating the Gulf of Guinea Oils Mainly on the Basis of Source Rock Anoxia68
Figure 44:	Tri-aromatic Sterane Carbon Numbers as Predictors of Kerogen Type for Gulf of Guinea Oils
Figure 45:	Plot of Cheilanthane Ratios (C_{20}/C_{21} Tricyclic Terpanes vs. C_{23} Tricyclic/ C_{24} Tetracyclic Terpanes) for Oils from the Gulf of Guinea70
Figure 46:	Standard Plot Separating Gabon-Angola Oils Based on Presumed Source Rocks (Additional Worldwide Source Rock Examples Added)
Figure 47:	Cross-Correlation of C_{25}/C_{26} Tricyclic Terpanes vs. Tetracyclic Polyprenoids/ C_{23} Tricyclic Terpane as an indicator of Lacustrine Source Type
Figure 48:	Mass Fragmentograms (m/z 191) for Seep Oils from Sao Tomé and Principé (red lines allow a common registration of the two analyses).75
Figure 49:	Use of Carbon Preference Indices (CPI) indicates that most Oils found in the Gulf of Guinea are Early-Mid Mature
Figure 50:	Ternary Plot constructed from Saturate, Aromatic and Polar Oil Fractions indicating Families of Oils Delineated by Bulk Chemical Composition
Figure 51:	Comparison of C_{29} Sterane Maturity Parameters, showing the Gulf of Guinea Oils to be Mainly Early-Mid Mature for All Families
Figure 52:	C_{27} Ts/Tm and the C_{29} Homologue as Maturity Indicators for the Oils of the Gulf of Guinea

Figure 53:	C_{29} and C_{30} Hopane/Moretane Ratios as Indicators of Maturity for the Oils of the Gulf of Guinea80
Figure 54:	The Relative Abundance of the Saturate Fraction in Oils increases with Maturity and also Anomalously with Fractionation
Figure 55:	Isoprenoids/n-Alkanes versus 25-Norhopane Ratio indicating the Mild and the Main Phase of Anoxic Intra-Reservoir Biodegradation Respectively
Figure 56:	Estimation of Water Washing from Aromatic Gasolines Relative to their Saturated Cyclic Homologues
Figure 57:	Low/High Molecular Weight Ratios of Tri-Aromatic Steroids vs Terpanes as Indicators of Fractionation of Gulf of Guinea liquids84
Figure 58:	Pregnanes (C21+C22 Steranes/Regular + Iso C29 Steranes) and nC17/nC27 as a Measure of Fractionation of Gulf of Guinea Liquids .85
Figure 59:	Informed Basis for Predicting the Most Probable Source Rock from an Oil Analysis
Figure 60:	Map showing Distribution of the 4 Oil Families identified in the Gulf of Guinea
Figure 61:	Isotope and Molecular Characteristics of Rio Muni Oils (Family A) Showing Field Locations on an Upper Cretaceous GDE Map
Figure 62:	Isotope and Molecular Characteristics of Kribi-Campo Oils (Family B) Showing Field Locations on an Upper Cretaceous GDE Map91
Figure 63:	Isotope and Molecular Characteristics of Benita I-1 and Belinda O-3 Condensates Showing Field Locations on a Paleogene GDE Map93
Figure 64:	Isotope and Molecular Characteristics of Alba-Zafiro Oils (Family D).95

List of Tables

Table 1:	List of Source Rocks Identified for initial screening for TOC and Rock Eval4
Table 2:	List of Source Rocks Identified for Extraction and Molecular Analysis of Extracted Hydrocarbons plus Samples with Existing Comparable Data Appropriate for Oil-Source Correlation
Table 3:	List of Oils Obtained and Subjected to Molecular Analysis by GC/GCMS for the Current Study
Table 4:	Stratigraphic Summary Statistics of Raw TOC Values based on TOC >1% with Tertiary Samples Differentiated by Kerogen Type15
Table 5:	Analytically-based Source Rock Properties for Southern Gulf of Guinea Wells and Coastal Outcrops
Table 6:	Analytically-based Source Rock Properties (>2%TOC, >2kg/t) based on Data from Southern Gulf of Guinea Wells and Coastal Outcrops
Table 7:	Summary of Geochemical Characteristics of Main Source Intervals51
Table 8:	Summary of Key Biomarker Characteristics of Rio Muni Oils (Family A). SR = source rock
Table 9:	Summary of Biomarker Characteristics of Kribi-Campo P-2 and other Oils, Including P-2, Sao Tomé and Principé Seeps (Family B)90
Table 10:	Summary of Biomarker Characteristics of Block O & I Oils (Family C)
Table 11:	Summary of Biomarker Characteristics of Zafiro/Alba Distal Niger Delta Oils (Family D)94
Table 12:	Oil-Source Correlation Matrix for the Gulf of Guinea Based on Bulk, Molecular and Isotopic Properties